Transcriptional regulation of cellular retinaldehyde-binding protein in the retinal pigment epithelium. A role for the photoreceptor consensus element.
نویسندگان
چکیده
Cellular retinaldehyde-binding protein (CRALBP) is abundantly expressed in the retinal pigment epithelium (RPE) and Muller cells of the retina, where it is thought to function in retinoid metabolism and visual pigment regeneration. Mutations in human CRALBP that destroy retinoid binding have been linked to autosomal recessive retinitis pigmentosa. To identify the DNA elements that regulate expression of the human CRALBP gene in the RPE, transient transfection studies were carried out with three CRALBP-expressing human RPE cell culture systems. The regions from -2089 to -1539 base pairs and from -243 to +80 base pairs demonstrated positive regulatory activity. Similar activity was not observed with cultured human breast, liver, or skin cells. Since sequence analysis of the -243 to +80 region identified the presence of two photoreceptor consensus element-1 (PCE-1) sites, elements that have been implicated in photoreceptor gene regulation, the role of these sequences in RPE expression was examined. Mutation of either PCE-1 site significantly reduced reporter activity, and mutation or deletion of both sites dramatically reduced activity. Electrophoretic mobility shift analysis with RPE nuclear extracts revealed two complexes that required intact PCE-1 sites. These studies also identified two identical sequences (GCAGGA) flanking PCE-1, termed the binding CRALBP element (BCE), that are also important for complex formation. Southwestern analysis with PCE-1/BCEcontaining probes identified species with apparent masses near 90-100 and 31 kDa. These results begin to identify the regulatory regions required for RPE expression of CRALBP and suggest that PCE-1-binding factor(s) may play a role in regulating RPE as well as photoreceptor gene expression.
منابع مشابه
Morphological changes in injured retinal pigment epithelium and photoreceptor cells after transplantation of stem cells into subretinal space
Introduction: Degenerative retinal diseases are main cause of irreversible blindness. Stem cells therapy is a promising way in these diseases. Therefore, mesenchymal stem cells because of its safety can produce degenerated cells and can play important role in treatment. The aim of this study was to examine morphological changes in injured retinal pigment epithelium (RPE) and photoreceptor cells...
متن کاملMolecular characterization of the mouse gene encoding cellular retinaldehyde-binding protein.
PURPOSE To clone and characterize the mouse gene encoding cellular retinaldehyde-binding protein (CRALBP). CRALBP appears to modulate enzymatic generation and processing of 11-cis-retinol and regeneration of visual pigment in the vertebrate visual cycle. Mutations in human CRALBP segregate with autosomal recessive retinitis pigmentosa. METHODS A genomic clone encompassing the 5' end of the CR...
متن کاملIdentification of a retina-specific Otx2 enhancer element active in immature developing photoreceptors.
The homeodomain protein, Otx2, is a critical regulator of vertebrate photoreceptor genesis. However, the genetic elements that define the expression of Otx2 during photoreceptor development are unknown. Therefore, we sought to identify an Otx2 enhancer element that functions in photoreceptor development in order to better understand this specification event. Using the technique of electroporati...
متن کاملLocalization of retinoid binding proteins, retinoid receptors, and retinaldehyde dehydrogenase in the chick eye.
Retinoids have many functions in the eye, including, perhaps, the visual guidance of ocular growth. Therefore, we identified where retinoid receptors, binding proteins, and biosynthetic enzymes are located in the ocular tissues of the chick as a step toward discovering where retinoids are generated and where they act. Using antibodies to interphotoreceptor retinoid binding protein (IRBP), cellu...
متن کاملIdentification of the endogenous retinoids associated with three cellular retinoid-binding proteins from bovine retina and retinal pigment epithelium.
The endogenous retinoids associated with three cellular retinoid-binding proteins from bovine retina and retinal pigment epithelium have been identified by their spectral characteristics and their co-migration with authentic retinoids on high performance liquid chromatography. All-trans-retinol is the only retinoid associated with the cellular retinol-binding protein from retina and retinal pig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 273 10 شماره
صفحات -
تاریخ انتشار 1998